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A Split-Operator, Finite-Difference Solution for
Axisymmetric Laminar-Jet Diffusion Flames

R. J. Kee* and J. A. Millerf
Sandia Laboratories, Livermore, Calif.

A split-operator numerical method is developed to solve the steady laminar diffusion flame problem. Splitting
the chemical kinetic terms from the fluid-mechanical terms ameliorates some of the difficulties associated with
the disparate time scales and stiffness in the set of equations which describes highly exothermic diffusion flames.
Implicit differencing methods enhance the numerical stability of both operators. Special care is taken to
maintain the accuracy of the solution, and the coordinate system is varied continuously to follow the flame
shape. The present method allows a detailed study of the complex interaction between the fluid mechanics and
the finite-rate chemical kinetics in a flame.
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Nomenclature
constant-pressure heat capacity of the gas mixture
constant-pressure heat capacity of the kth species
trace diffusion coefficient of kth species
acceleration due to gravity
enthalpy of species A: per unit mass
number of radial nodes
number of species
pressure
radial dimension
universal gas constant, ergs/mole-K
source term in general transport equation
temperature
axial velocity
radial velocity
transformed radial velocity
formation rate of kth species by chemical reaction
molecular weight of kth species
axial dimension
mass fraction of kth species
coordinate spread angle
transformed axial dimension
origin of coordinate system referenced to nozzle exit
transport coefficient in general transport equation
conductivity
transformed radial coordinate
mass density of the gas mixture
viscosity
chemical symbol for kth species
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Subscripts
I = axial node index
j ' • = radial node index
& — species index
n — reaction index
e = edge condition

Introduction

COMBUSTION processes are characterized by the
existence of multiple, vastly differing time and length

scales, and thus their computational description suffers from
a number of associated difficulties. Numerical methods have
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not been developed to handle adequately these highly
exothermic, chemically reacting flows. Without accurate
prediction schemes, the dual goal of producing more efficient
combustors and at the same time reducing their pollutant
output is exceedingly difficult. The problem of the laminar-jet
diffusion flame is typical of many combustion problems, and,
consequently, it embodies common computational dif-
ficulties. For this reason, and because uncertainties in the
reaction mechanisms and transport properties are minimized,
we have chosen to develop a numerical model for the
hydrogen-air diffusion flame.

The basic configuration is a fuel jet that is issuing vertically
into ambient, still air, and the flame has been ignited long
enough for a steady flow to develop. A flame zone can be
defined by a thin, high-temperature region, which, beginning
at the nozzle tip, bows radially outward before eventually
converging at the jet centerline. Flame length, typically
thought of as the distance from the nozzle to the point of peak
centerline temperature, increases as the inlet fuel flow rate
increases. Although the peak temperatures converge toward
the centerline, the complete region of elevated temperatures
spreads monotonically.

The convective and diffusive processes that describe the
flame are characterized by one time scale, whereas the
chemical kinetics processes in the highly active reaction zone
are characterized by a much smaller time scale. Moreover, the
chemical time scale itself is broken up into widely varying
time scales. For example, the creation and destruction rates
for reaction intermediates, particularly free radicals, are
much faster than the rates for the overall conversion of
reactants to products.

Since the flames studied here are characterized by axial
convective fluxes that are much larger than the diffusive
fluxes, it is appropriate to employ the boundary-layer
assumptions in the governing equations. However, a full
finite-rate, chemical kinetics mechanism is incorporated. An
operator-splitting method is used to deal effectively with the
disparate chemical and fluid-mechanics scales, and use of the
Hindmarsh-Gear] algorithm serves to resolve the difficulties
of stiffness and disparate time scales within the chemical-rate
equations.

The solutions are computed on a finite-difference grid
network. Through an analytic variable transformation, this
grid system is altered continuously to follow the flame shape
and maintain maximum radial resolution in the finite-
difference equations. The axial step size is adjusted
automatically to insure that the difference equations have
converged to within a prespecified error tolerance.

In the present paper, we develop briefly the physical and
chemical model. However, we describe in detail the numerical
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method that we have used and discuss its application. In a
companion paper,2 we present the result of our calculations,
concentrating on the chemical mechanism and the roles of the
reaction intermediates.

Physical and Chemical Model

Governing Equations
Instead of the Navier-Stokes equations, we use the

boundary-layer equations, together with an assumption of
uniform pressure; and, as a result, we obtain a set of
parabolic, rather than elliptic, equations. Because the
pressures are low and the temperatures are high, the
assumption of a thermally perfect gas is valid.

By transforming from cylindrical coordinates to similarity-
like variables, some computational advantages can be
achieved. The new idependent variables are

vi(r,x)=r/x (1)

(2)

This transformation removes the locally linear boundary-
layer growth which results from a spreading of the jet in order
to conserve mass, momentum, and energy. One new
dependent variable also is introduced and is given by

To obtain a definition.of the coordinate system, we specify
an origin £0 and a spread angle a. The 1? coordinate varies
from zero at the center line to 7^= tana at the outer edge.
Absolute values of x have no meaning in the physical
equations; however, because the transformation is singular, |
itself does appear in the governing equations, and it must be
referenced to the origin of the coordinate system £0. After
each downstream step in the numerical procedure, we can
adjust the values of %0 and a to account for the local jet
growth. The transformed governing equations are stated
below:

viscous dissipation have been neglected. The diffusion
coefficient Dk is a trace diffusion coefficient of the kth species
in N2. Justification for this formulation comes from re-
cognizing that the principal constituent in the reaction zone is
N2 and that, moreover, the actual bimolecular diffusion
coefficients do not vary greatly for the different species. A
consequence of the trace diffusion coefficient approximation
is that conservation of mass is not guaranteed. Therefore,
only K— 1 species equations should be solved, and the Kth
species should be specified to satisfy

We choose not to solve a species conservation equation for
N2. Equations (4-8), together with the assumption of uniform
pressure, form a set of K+4 equations for the dependent
variables u, V, T, p, and Yk.

Recognizing the common form of the transport equations
and writing a general equation will facilitate further
derivations. That equation is stated as

The variable /represents either u, T, or Ykt whereas d comes
from the buoyancy term in the momentum equation, and S is
the chemical source contribution in both the energy and
species equations. The term B represents the energy transport
caused by species diffusion velocities.

Rather than solve the continuity equation as it stands in Eq.
(4), we find it advantageous to eliminate the £ derivatives in
the first term by substituting the transport equations. This
elimination first requires that we differentiate the equation of
state to procure an expression for dp/d£ in terms of dT/d^ and

R
-'dT

Continuity

dpu 1 8V

Axial Momentum

du Vdu^_J_ d_

Thermal Energy

dT VdT _ 1 i
PW£TT + ~ v ~~ ^TT~ 7

du
^

' '

(5)

Species

Equation of State

(6)

(7)

(8)

Implicit in these equations are a number of assumptions.
The effects of both thermal and pressure diffusion and

(10)

The revised continuity equation is written as

V du VdT pRTV

1 d / du\ u d

dV

\-- — \ —
^~ k=l

pRT

BY-t\BT
(11)

Such a formulation, first suggested by Krause,3 allows us to
solve for Kfrom T, w, and I^-at any axial location by solving
a first-order initial-value problem.

Thermodynamic and Transport Properties
All transport properties for individual species have been

calculated from the appropriate Enskog-Chapman ex-
pressions using the Lennard-Jones parameters given by
Svehla.4 Correlations of these properties as a function of
temperature have been given byJPohl5 and are used in the
calculations presented here. The viscosity and conductivity of
the gas mixture are obtained from the single-component
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transport properties using Wilke's semiempirical formulas.
(See Ref. 2 for more details.)

Thermodynamic properties (heat capacities, entropies, and
enthalpies) are computed from the JANNAF data used in the
NASA Complex Chemical Equilibrium Code.6 Equilibrium
constants in terms of partial pressures are obtained from the
relation

Table I Reaction mechanism for H? -air combustion

= exp( - n /R) (12)

where AH and AS refer to the change that occurs in the
standard state enthalpies and entropies in passing from
reactants to products by the nth elementary chemical reaction.
The corresponding equilibrium constant in terms of con-
centrations is given by Eq. (3):

1.01325* (13)

where

and v^
reaction.

= E <*;*-•*;;*)
'nk are stoichiometric coefficients in the nth

Chemical Kinetic Formulation
The elementary chemical reactions are expressed as

(14)

The rate-of-progress variable for the nth reaction dn is defined
as the forward rate minus the reverse rate, as stated in Eq.
(15):

k=!
-krn ft (15)

The species production terms in the conservation equations
are found from

(16)

where vnk = v'^k — v'nk. The reverse rates are given in terms of
the forward rates and the equilibrium constants as

kr = kf IKCrn Jn cn (17)

The calculations that we give in this paper to illustrate our
method involve the oxidation of molecular hydrogen by air.
The specific reaction mechanism involves 10 species (H2, O2,
N2, H, O, N, OH, HO2, H20, NO) and is listed in Table 1.
Also listed are the forward rate constants, which have the
common form

These rate constants have been compiled from numerous
sources in the current literature; the specific references are
given in Ref, 2,

Initial and Boundary Conditions
The governing set of partial differential equations is

parabolic in nature; thus boundary conditions are required at
7? = 0 and rj = ?je, and initial conditions must be imposed at the
burner exit plane. The centerline T? = 0 is an axis of symmetry;
therefore, conditions

Reaction pn En, cal/mole

2)

4)
5)
6)
7)
8)
9)

10)

11)
12)

13)
14)
15)
16)

1 = H2O

^NO + H

1.7 X l O 1 3

5.2 XlO 1 3

1.22 XlO 1 7

1.8 XlO 1 0

XlO 1 5

X l O 1 3

XlO 1 3

xiO1 3

xiO6

2.23 X lO 1 2

1.15X1013

1.85X1011

7.5 XlO 2 3

XlO2 5

XlO 1 4

xiO 9

xio1 3

xiO 1 3

2.0
1.2
6.0
1.0
1.7

1.5
1.4
6.4
4.0
1.3

0.0
0.0

-0.907
1.0 .
0.0
0.0
0.0
0.0
2.03
0.5

0.5
-2.6

0.0
1.0
0.0
0.0

47,780.0
6,550.0

16,620.0
8,826.0
- 870.0

0.0
0.0
0.0

-1,190.0
92,600.0

95,560.0
0.0

75,800.0
6,280.0

0.0
0.0

must be applied there. At the outer edge of the jet, all of the
dependent variables must become equal to their ambient
freestream values:

(T),e = Te> (20)

Since it is both inconvenient and inefficient to have ??e-*oo
in a numerical calculation, it is necessary to insure by some
alternative means that radial gradients vanish at the outer
edge of the jet. Otherwise, the result would be a net loss of
mass, momentum, and energy from the flame. This condition
is satisfied by a continuous adjustment of the coordinate
system to appropriate values of t\e. Such a specification is
discussed more completely in the section describing the
solution methods. Equation (11), which is used to solve for V,
is first order in 77; thus no boundary condition on Fat 17 = i;e is
required. As a consequence of the calculation, the en-
trainment rate at the edge of the jet is determined.

Although the boundary conditions are straightforward, the
formulation of the initial conditions requires some physical
insight and judgment. At the exit plane of the burner nozzle,
ail of the dependent variables must be specified so that the
correct flame structure develops as the solution proceeds
downstream. The axial velocity profile is assumed to have the
form of the similar solution for an incompressible isothermal
circular jet.7

Physically, one expects that a narrow mixing zone must
exist in the vicinity of the burner lip prior to ignition of the
gases by radiation and axial heat conduction. Of course, the
boundary-layer approximation does not allow for upstream
energy transport. Thus it is necessary to specify as initial
conditions that the fuel and air have been mixed over a
narrow region near the lip and raised to a temperature high
enough to allow rapid chemical reaction and energy release to
occur where the fuel and oxygen have mixed to ignitable
proportions. We assume the initial species distributions to be
in the form of arc-cotangent functions. These are only
smoothing functions and have no special physical
significance. They are used only to avoid numerical dif-
ficulties with step function changes in the initial conditions.

The temperature profile at the burner exit is specified in the
form of a gaussian function, which is centered at the nozzle
lip. (This is also the stoichiometric point.) Its height is taken
at about the observed flame temperature (~ 2100 K), and its
width is adjusted so that the region of elevated temperature is
confined to the mixing zone. There is considerable latitude
available in specifying the initial temperature profile. It is
necessary, however, that the temperatures be high enough and
the gradients small enough to allow the chain branching
reactions to occur; i.e., the reaction H + O2^OH + O must
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Fig. 1 Qualitative shapes of the initial condition profiles.

proceed faster than H + O2 +M—HO2 +M. Otherwise the
reaction will not be sustained downstream. The exact forms of
the initial conditions are relatively unimportant, and the
qualitative shapes are given in Fig. 1.

Numerical Method

Operator Splitting
The numerical technique that is developed here is a split-

operator finite-difference method. Two operators are for-
mulated to handle the fluid-mechanical and the chemical
contributions to the solution in ways commensurate with their
physical behavior. The theoretical basis for operator splitting
(also called the method of fractional steps) was documented
carefully in 1971 by Yanenko.8 Probably the most widely
used form of operator splitting is the familiar ADI algorithm.
More recently, Rizzi and Bailey9 have developed a method to
compute in viscid, reacting flows wherein the chemical rate
terms and the convective terms in two spatial dimensions are
split. Another splitting scheme has been used by Thomas and
Wilson10 to calculate the flow in a chemically reacting tur-
bulent jet.

There are generally two classes of fractional-step methods.
Schemes such as ADI employ a formulation whereby one or
more terms are evaluated implicitly and all of the others are
evaluated explicitly fora fraction of the step; then, in the next
fractional step, another set of terms is taken implicitly, and an
explicit combination of the remaining terms is used. The step
is divided into as many fractions as there are terms to be
differenced implicitly. This type of splitting is said to have
absolute consistency, since each term of the differential
equation is in some way represented during each fractional
step. The other class of methods allows one or more terms
during each fractional step to be considered alone while the
remaining terms are ignored. These methods, called majorant
splitting, probably are more appropriate for chemically
reacting flow problems. The equations that result from the
terms being considered can be solved by numerical methods
that are well suited to the behavior of each equation. This
method, however, produces consistency only after all frac-
tional steps are completed and not during each fractional step.
Later in the present formulation, we shall see that the radial
independence of the chemistry operator makes a majorant
splitting method attractive.

A number of advantages accrue from operator splitting.
One is the numerical stability gained by being able to use
implicit difference operators efficiently. Generally, implicit
marching methods are more stable than explicit ones.
However, fully implicit methods normally require the solution
of large linear systems of equations, a procedure that is
computationally costly. It therefore becomes attractive to
split the various terms and solve smaller sets of implicit
equations. If the time scales of the terms in a set of equations
vary widely, then it is costly to evaluate the differences in-
volved in the slowly changing terms with the same frequency

as is required for the rapidly changing ones. With operator
splitting, one large step can be used to advance the slowly
varying terms, whereas several smaller steps can be taken on
the faster terms. Such is often the case when chemical changes
occur much faster than fluid-mechanical changes.

We split the general transport equation, Eq. (9), into two
parts that group the fluid-mechanics and chemical kinetics
terms:

~*~l-- drj

(22)

Recall that/is a vector of K+2 variables, and note that both
of the preceding equations are very nonlinear. The system of
Eq. (22) is also stiff.

Transport Step
Consider first the fluid-mechanical step, Eq. (21). Two

reasons have led us to approximate it with an implicit finite-
difference operator. The parabolic nature of the equation
means that the solution at any axial location should be
continuously dependent on the boundary conditions at that
location. If this behavior is to be represented properly, the
numerical method must insure that the solution at each radial
grid point will be influenced by the current boundary con-
ditions; and only an implicit method, which couples the
points, can achieve this result. The other factor that argues
for an implicit procedure is the need for numerical stability
when one is linearizing a set of nonlinear equations. For one
step from £ to £ -f A£, the implicit difference equation, which
involves three radial locations (index J) and two axial
locations (index /), is written as

- 1/2

Vj
r-j-l/2^j-i/2 ,,

(23)

For each of the K + 2 components of/, Eq. (23) represents a
tridiagonal system of equations, the solution of which yields a
new vector //+ lsj. Primed variables should not be thought of
as representing any solution to the differential equations; they
are simply intermediate variables in the splitting scheme. The
i+l index on the primed variables does not imply that those
variables are correct at the £,-+7 location. We retain the index,
however, because, in the absence of any source terms [Eq.
(22)], the primed quantities would be solutions at f i+]; and, in
any case, the actual mechanics of solving Eq. (23) are carried
out as though the primed quantities do have spatial meaning.

In view of the size of the system of equations [J(K+2)
unknowns], Eq. (23) is solved sequentially for each of the
K+2 components offf+ij. The solutions for any/' and ally
are accomplished implicitly with a tridiagonal matrix
algorithm. Since the nonlinear terms (u, V, a, B, e, p, and d)
are all functions of/, some consideration has to be given to
how the terms are to be evaluated. We have used two ap-
proaches.

Our initial approach was to solve the sequence repetitively
and to update the nonlinear terms continuously by evaluating
them at the current iterate of fl+ij. The iteration continues
until each of the difference equations is satisfied to within a
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specified tolerance. Although this approach works, it does not
yield any direct measure of the solution accuracy. Instead, it
can be said only that the solution is accurate to order A£, and
the value of the step size must be reduced until the solution is
sufficiently correct. We later found it desirable to specify a
relative local error tolerance E beforehand and to automate
the step-size control to achieve that error.

The method used for error control is to take two steps of
A£/2 and one step of A£, and then to compare the solutions at
£+A£. From this comparison, a local error ef is defined for
each component of/as

essential features of the equation are more apparent if it is
written as

max
j [ \f?(J>.__/Y^; j -|

mw/if^ J
j

(24)

where the superscript refers to the number of steps. The
overall local error e is taken as the maximum of ef for all /.
Whether the step size is increased or decreased depends on
whether e is greater or less than E. When the convergence has
been reached (e<E) for some A£, the solution at £ + A£ is
taken as ft+}j.

There is little precedent for imposing such a stringent error
control on the solution of partial differential equations,
although similar convergence tests are applied routinely in the
solution of ordinary differential equations. We are requiring
that J(K + 4) components of the solution vector converge
simultaneously to the requested tolerance (£ = 0.05 in the
present work).

In this one-step, two-step algorithm, the nonlinear terms
are linearized and evaluated explicitly. More specifically, both
f!+}j and //+ j-f2j are based on nonlinear terms evaluated at
ffj: and £. However, the second half-step fl¥)j *s based on
nonlinear terms evaluated aift+j/2j and £+A£/2. In prin-
ciple, the convergence rate of the scheme could be increased if
Eq. (23) were averaged in the Crank-Nicholson manner, since
the local truncation error would be decreased. However,
because of the nonlinearities, we have chosen to retain the
fully implicit differencing to enhance the numerical stability.

All of the nonlinear factors, except K, are found from
algebraic expressions and are evaluated simply from ffa. On
the other hand, the continuity equation, whose solution
provides the values of Vij9 is an initial-value problem. Typical
boundary-layer codes (cf. Ref. 11) solve the finite-difference
analog to Eq. (4) directly. We believe here, however, that a
solution to Eq. (11) is more appropriate; there are two reasons
for the choice. The first is that, once values of u, T, and Yk
have been predicted at some £, there is a unique solution for V
which is consistent with these values, and solving Eq. (4)
requires more than the minimum information to determine
that unique solution. Moreover, at the initial conditions,
where u, T, and Yk are specified as a function of radius alone,
there is insufficient information to evaluate the £ derivatives.
We feel that the continuity equation should be evaluated in
the same manner at each £, as it is for the initial conditions.
The second reason for choosing Eq. (11) concerns the
inexactness of the initial conditions. Specifying the initial
conditions essentially requires that one assume the true
solution at the initial-condition plane. In general, there is no
way to infer the exact physical solution; so it is important that
the solution "forget" the initial conditions as rapidly as
possible. Solving the continuity equation in a form in which
the streamwise derivatives have been eliminated helps ac-
complish this goal, since the procedure does not incorporate
explicitly any information from previous steps.

Inasmuch as K appears only within the transport portion of
the split [Eq. (21)], it is appropriate that the terms in Eq. (11)
which involve the chemical production &k should be dropped,
even though their inclusion causes no difficulty. Doing this is
equivalent to performing the split first and then reformulating
the mathematical problem associated with the transport step.

The solution technique that is applied to Eq. (11) takes
advantage of the fact that the equation is linear in V. The

6V

where

1 du 1 dT pRT

(25)

1 dYk
77T ~T~ (26)

/ v-'i JL k=I If ^v

and Q(y) is the right-hand side of Eq. (11).
The P(?i) and Q(n) functions are determined by finite-

difference approximations of the i? derivatives. Most of these
derivatives already have been evaluated for the solution of the
transport Eq. (26). By means of an integrating factor, we can
integrate Eq. (25) as

-J P(r?)di?] J exp[J

(27)

The constant of integration C is zero, since F(0) = 0 as a result
of a symmetry condition at the jet centerline. The function
P(II) is an exact differential in 77, and so the integrating factor
always can be written as

(28)

The function (?(??), on the other hand, can be evaluated only
through a finite-difference approximation at each node. The
integral then is evaluated by a numerical quadrature method,
which fits a series of overlapping polynomials to the integral
at each node. The quadrature algorithm itself introduces very
little error into the solution procedure. In practice, however,
accuracy degradation can develop as both u and its derivatives
approach zero at the outer edge of the jet unless the terms in
Q(rj) are evaluated accurately. These difficulties typically are
apparent only near the initial conditions and do not seem to be
a problem as the solution proceeds downstream.

Chemistry Step
Having the converged solution for the first part of the split,

we now may turn our attention to the chemical production
terms, Eq. (22). The solution //+ / y is thought of as predicted
intermediate values of the solution, and these are used as
initial conditions of Eq. (22) as it is solved to complete the
step to £/+;. Since S contains no spatial derivatives and since
the momentum equation contains no chemical source term,
the set of equations is a system of K + 1 ordinary differential
equations at each nodey.

The system of equations is usually stiff, and its solution
frequently has rapid transients. If the full set of equations
were differenced and solved in the form of Eq. (11), then the
step size A£ would be restricted to a value that would capture
the fastest transients at any radial position rj. In the vicinity of
the flame, the reactions are quite fast compared with the
fluid-mechanical scales, and the step size would have to be
quite small. In other portions of the jet, however, the source
terms could be relatively small, and the step size should be
controlled by fluid-mechanics considerations. The stiffness of
the set of equations requires that implicit integration formulas
be used to overcome the inherent step-size limitations, even in
regions where the solution does not have rapid transients.
Therefore, if the operators were not split, the implicit nature
of the integration would require a set of J times AT -hi
equations to be solved, an extensive procedure compared with
solving J sets of K+ 1 stiff equations with operator splitting.
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It also should be noted that only the majorant-type split
accomplishes the radial decoupling, whereas an ADI-type
split still leaves the equations coupled, although explicitly.

After testing several solution methods for stiff differential
equations, we found that the Hindmarsh-Gear package1 was
the most efficient. Euler backward differentiation algorithms
developed instabilities as the step sizes became large.
Collocation methods too became unstable if too few
collocation points were used or if the local error tolerances
were too loose. When other methods did converge to valid
solutions, the computation times generally were longer than
those required by the Gear code.

To proceed from £/• to £ /+/ at some y, the Gear package
takes as many steps as necessary to maintain the desired
accuracy, and it varies the step size and order of integration
dynamically to optimize computational efficiency. (A relative
error tolerance of 10 ~4 has been used in the present work.) By
using higher-order formulas when they are appropriate, Gear
is able to take much larger steps than would be possible with
the strictly lower-order routines. Also, Gear does not
necessarily evaluate the Jacobian matrix at any step for which
a previous estimate of the matrix is sufficiently valid, and, by
thus judiciously evaluating the Jacobian, it gains substantial
efficiency over more straightforward integration methods. In
all cases, we have used finite-difference Jacobian evaluations
rather than analytic evaluations. The result of the integration
of Eq. (22) from the initial conditions found by solving Eq.
(21) now represents a valid solution to the full equations.

Symmetric Operator
It has been shown by previous investigators9"12 that a split

symmetric operator often can lead to improved accuracy and
efficiency of a numerical method. Although the improvement
can be proved for certain operators, this is not the case in the
present work, where the chemistry operator is a multistep
variable-order algorithm. Even so, it is reasonable to expect
that some advantage will be gained by using a symmetric
operator. Moreover, we realize a computational savings from
the symmetric operator in addition to any potential gain in
convergence rate.

Let us consider two operators which, when applied twice,
advance the solution from £,- to £,>2- We represent this
procedure with a transport and a chemistry operator in the
following expression:

fi+2J ~ (29)

The first LT operator provides a predicted value of//+ / y ; then
the first Lc operator does a correction of that first step. Then,
since the sequence does not repeat with another LTLC
operation, the chemistry operator continues on to / + 2, the Lc
now forming the predictor and LT the corrector.

It is preferable to restart the stiff ordinary differential
equation integrator code as infrequently as possible, since
there is some overhead associated with the startup algorithms.
Specifically, the integrator begins with low-order methods
and uses a small step size to obtain the required accuracy.
Then, as the integration progresses, the history of the solution
can be used to form higher-order difference approximations
and so allow larger step sizes. Thus, proceeding from £, to

•£j+2 without interrupting the integrator permits a more ef-
ficient utilization of the variable step size and order features
of the ordinary differential equation solver. The result of the
second chemistry operator is a predicted solution at £ />2,
which the transport operator then uses as initial conditions to
complete the step.

Grid System
The appropriate step size A£ is chosen by the first transport

operator to maintain a specified error. The chemistry
operator then typically takes many steps to advance the
solution to predicted values at £ + 2A£. The transport

operator, now called to compute a corrector step from
to £ + 2A£, may have to take smaller steps (of less than A£) in
order to maintain the desired accuracy. Thus the step size
really should be thought of as the distance over which the
operator split occurs, since, for the actual integration, all of
the operators except the first LT may use other step sizes.

At the end of one full symmetric step, the coordinate system
is examined and modified as necessary. Even though only the
value of/at the outer edge is specified as a boundary con-
dition, we must maintain the condition that df/dy be nearly
zero. However, since the derivative approaches zero only as r?
approaches infinity, one must be satisfied with guaranteeing
that df/dv does not grow beyond some upper-bound du. On
the other hand, df/dy should be specified to be larger than
some lower-bound dL; otherwise resolution is lost near the
flame when too many nodes are being placed in the asymp-
totic region of the solution. Therefore, if df/dy and if) = ̂ e is
outside the bounds 5L <df/drj<du, the coordinate system is
changed for the next step. The spread angle a. is either in-
creased or decreased by an increment Aa. The same grid
points are used at £,-, so that no interpolation is required when
the coordinate system changes. It is clear that, when a.
changes, -then £0 also must change for the next step. (The
redefinition of these terms is depicted in Fig. 2.) The result of
the regridding procedure is that the coordinate system
dynamically changes as necessary to conserve energy,
momentum, and species and yet retains a maximum number
of nodes in the region of interest.

Discussion of the Method
A typical flame calculation is used here as the basis for

discussing the results of the numerical method. Consider a
hydrogen jet with a 0.635-cm diameter and a maximum
velocity of 1000 cm/s which is issuing into still, 300 K air at 1
atm. The calculated isotherm plot, together with the grid
system that is generated during the computation, is shown in
Fig. 3. Peak temperatures are slightly above 2000 K, and the
flame length is about 4 cm.

Grid Network
The flame exhibits a very rapid radial growth in a high-

gradient region just as the jet exits the nozzle. The grid
generation algorithm in the code produces the required fine
axial grid spacing in this region. As the flame spreads, the
coordinate system does also, producing a coarser radial
spacing. However, as the solution proceeds downstream, the
gradients become less steep, and the coarser grid still retains
the needed resolution.

In the present calculation, we use a total of 50 equally
spaced radial nodes, which is adequate to resolve the steepest
gradients for any of the species. Unlike boundary-layer flows
in which nodes should be concentrated near the wall, the
diffusion flame has no such unique region in which high
resolution is required. Generally, the gradients for the minor

Fig. 2 Coordinate system drawn in the physical coordinates,
showing a change in spread angle between steps.
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Fig. 3 Isotherms and grid system for 1000-cm/s maximum velocity
H-air diffusion flame.
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Fig. 4 Major species and temperature profiles at 1.5 cm from nozzle
exit.

species such as free radicals are much sharper than those for
the major species or the temperature or velocity. Compare,
for example, the various radial profiles at 1.5 cm from the
nozzle exit. Figures 4 and 5 reveal rather smooth profiles for
the major species, temperature, and velocity. On the other
hand, a profile of the OH radical in Fig. 6 is much more
peaked. Also plotted in Fig. 6 are the chemical equilibrium
values of OH (which reveal that the flame is well out of
equilibrium). Even sharper than the minor species, in some
cases, are the profiles of-the local heat release from the
various elementary reactions (Fig. 7). Consequently, to
determine the adequate number of radial nodes, it is necessary
that we look at more than the overall flame characteristics.

Although the minor species control the grid spacing, we
find that the radial grid growth typically is governed by the
thermal gradients, which extend further into the ambient air
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Axial and radial velocity profiles at 1.5 cm from nozzle exit.

0.006

0.005

0.004

0.003

0.002

0.001

0

EQUILIBRIUM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
RADIUS (CM)

Fig. 6 Mass fraction of OH and equilibrium mass fraction of OH at
1.5 cm from nozzle exit.
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Fig. 7 Radial profiles of the contribution of the elementary reactions
to heat release.

than do either the shear or species gradients. This result is not
unexpected, since the reaction mechanism is highly tem-
perature-dependent and since the peak temperatures occur
well outside the regions of maximum velocity.

The axial step size begins quite small near the nozzle exit
and then grows until, at the end of the problem, it is about
equal to one nozzle radius. For this problem, a total of about
200 axial steps is required, with fine spacing near the nozzle,
principally to accommodate a need for high resolution
because the flame grows so rapidly. Although this is a region
of rapid axial as well as radial change, it should be noted that
in the transformed coordinates the axial change is not as rapid
as it is in the physical coordinates because the grid system
tends to align itself with the flame growth.

Splitting
When using a symmetric split-operator approach, one has

to decide whether to consider the solutions after anLTLcLcLT
sequence or after an LCLTLTLC sequence. Both yield valid
solutions to the difference equations, and yet the resulting
numbers do vary. In fact, only for a vanishingly small step
size will the numbers be identical. For example, if the
sequence is ended with an LT, the combustion product species



176 R. J. KEE AND J. A. MILLER AIAA JOURNAL

in the flame zone are less plentiful than if. the sequence is
ended with an Lc operator, since these species will have
partially diffused away. In practice, this effect is most ap-
parent near the nozzle. In that region we observe that, for
similar points in the flame, say around the peak temperature,
the solutions after an Lc step are changing slowly as the in-
tegration proceeds downstream. The solutions after the LT
step, on the other hand, are converging toward the solutions
that are obtained after the Lc step. Since we expect the
structure of the narrow flame zone to be relatively insensitive
to the downstream position, and since the solution after an LT
step is converging to that after an Lc step, we choose to
consider the solution valid after each LCLTLTLC sequence.
Presumably, the inaccuracy after an LT step can be caused by
initial conditions in which the gradients are too steep, thus
indicating that diffusion of species and energy is occurring at
rates faster than physical until the solution has adjusted from
these initial conditions.

Although it apparently is not needed for the flames
presently being studied, one can envision situations in which
an additional constraint on the step size is required. In the
present method, the step size is chosen in order to force
convergence of the transport operator in one step. If,
however, this step size becomes so large that the solutions
after an LT or an Lc step are not within a certain tolerance of
each other, then it would be desirable to decrease the step size
further.

Computer Time
Computer time for the problem discussed here is 4 h on a

CDC 6600. That time, of course, depends on the error
tolerances specified and on the number of radial nodes used.
Since the transport method is first-order in the marching
direction, the computer time is strongly dependent on the
error tolerance there. In principle, the convergence rate on the
transport operator could be increased by a Crank-Nicholson
averaging, but the nonlinearities in the equations somewhat
cloud that certainty. In any case, although the decreased
truncation error would not increase the accuracy, it should
.decrease the running time.

The chemistry operator employs a variable-order algorithm
that internally selects the order to minimize computer time
and yet still maintains the requested accuracy. Consequently,
since high-order methods are available, the computation is
still quite efficient when more accuracy is requested. Even so,
the bulk of the overall computing time is spent doing the
chemistry step.

The present computation is clearly an expensive one and
most of the time is taken near the nozzle, where very rapid
transients occur. Because changes are occurring so rapidly in
the flowfield, very small step sizes have to be used in order to
maintain the desired accuracy. Also, in this region the
chemical ignition process is occurring which results in a
difficult chemical kinetic computation. Since the velocities are

low in the flame zone, the chemical kinetics problem is
analogous to integration over a very long time step even
though the axial step is small.

Conclusions
We have demonstrated an effective tool for studying the

detailed structure of jet diffusion flames. Such a code allows
the careful evaluation of convection, diffusion, and chemical
production for any species at any point in the flame. In fact, a
companion paper2 is devoted to discussing these fluid-
mechanics and combustion aspects of the hydrogen diffusion
flame.
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